ASP源码.NET源码PHP源码JSP源码JAVA源码DELPHI源码PB源码VC源码VB源码Android源码
当前位置:首页 >> 低调看直播体育app软件下载 >> Pythonjrs看球网直播吧_低调看直播体育app软件下载_低调看体育直播 >> python多线程 Python(八)进程、线程、协程篇

python多线程 Python(八)进程、线程、协程篇(1/6)

来源:网络整理     时间:2016-06-27     关键词:python多线程

本篇文章主要介绍了"python多线程 Python(八)进程、线程、协程篇",主要涉及到python多线程方面的内容,对于Pythonjrs看球网直播吧_低调看直播体育app软件下载_低调看体育直播感兴趣的同学可以参考一下: 本章内容:线程(线程锁、threading.Event、queue 队列、生产者消费者模型、自定义线程池)进程(数据共享、进程池)协程线程Threading用于...

本章内容:

  • 线程(线程锁、threading.Event、queue 队列、生产者消费者模型、自定义线程池
  • 进程(数据共享、进程池)
  • 协程

 Python(八)进程、线程、协程篇

线程

Threading用于提供线程相关的操作。线程是应用程序中工作的最小单元,它被包含在进程之中,是进程中的实际运作单位。一条线程指的是进程中一个单一顺序的控制流,一个进程中可以并发多个线程,每条线程并行执行不同的任务。

threading 模块建立在 _thread 模块之上。thread 模块以低级、原始的方式来处理和控制线程,而 threading 模块通过对 thread 进行二次封装,提供了更方便的 api 来处理线程。

import threading
import time

def worker(num):
    time.sleep(1)
    print(num)
    return

for i in range(10):
    t = threading.Thread(target=worker, args=(i,), name="t.%d" % i)
    t.start()

# 继承式调用

import threading
import time

class MyThread(threading.Thread):
    def __init__(self,num):
        threading.Thread.__init__(self)
        self.num = num

    def run(self):    #定义每个线程要运行的函数

        print("running on number:%s" %self.num)

        time.sleep(2)

if __name__ == '__main__':

    t1 = MyThread(1)
    t2 = MyThread(2)
    t1.start()
    t2.start()

thread方法:

  • t.start() : 激活线程
  • t.getName() : 获取线程的名称
  • t.setName() : 设置线程的名称 
  • t.name : 获取或设置线程的名称
  • t.is_alive() : 判断线程是否为激活状态
  • t.isAlive() :判断线程是否为激活状态
  • t.setDaemon() 设置为后台线程或前台线程(默认:False);通过一个布尔值设置线程是否为守护线程,必须在执行start()方法之前才可以使用。如果是后台线程,主线程执行过程中,后台线程也在进行,主线程执行完毕后,后台线程不论成功与否,均停止;如果是前台线程,主线程执行过程中,前台线程也在进行,主线程执行完毕后,等待前台线程也执行完成后,程序停止
  • t.isDaemon() : 判断是否为守护线程
  • t.ident :获取线程的标识符。线程标识符是一个非零整数,只有在调用了start()方法之后该属性才有效,否则它只返回None
  • t.join() :逐个执行每个线程,执行完毕后继续往下执行,该方法使得多线程变得无意义
  • t.run() :线程被cpu调度后自动执行线程对象的run方法

 线程锁

threading.RLock & threading.Lock

我们使用线程对数据进行操作的时候,如果多个线程同时修改某个数据,可能会出现不可预料的结果,为了保证数据的准确性,引入了锁的概念。

import threading
import time

num = 0

lock = threading.RLock()    # 实例化锁类

def work():
    lock.acquire()  # 加锁
    global num
    num += 1
    time.sleep(1)
    print(num)
    lock.release()  # 解锁

for i in range(10):
    t = threading.Thread(target=work)
    t.start()

threading.RLock和threading.Lock 的区别

RLock允许在同一线程中被多次acquire。而Lock却不允许这种情况。 如果使用RLock,那么acquire和release必须成对出现,即调用了n次acquire,必须调用n次的release才能真正释放所占用的锁。

import threading

lock = threading.Lock()
lock.acquire()
lock.acquire()  # 产生死锁
lock.release()
lock.release()

import threading

rlock = threading.RLock()
rlock.acquire()
rlock.acquire()      # 在同一线程内,程序不会堵塞。
rlock.release()
rlock.release()
print("end.")

threading.Event

Event是线程间通信最间的机制之一:一个线程发送一个event信号,其他的线程则等待这个信号。用于主线程控制其他线程的执行。 Events 管理一个flag,这个flag可以使用set()设置成True或者使用clear()重置为False,wait()则用于阻塞,在flag为True之前。flag默认为False。

  • Event.wait([timeout]) : 堵塞线程,直到Event对象内部标识位被设为True或超时(如果提供了参数timeout)
  • Event.set() :将标识位设为Ture
  • Event.clear() : 将标识伴设为False
  • Event.isSet() :判断标识位是否为Ture

import threading

def do(event):
    print('start')
    event.wait()
    print('execute')

event_obj = threading.Event()
for i in range(10):
    t = threading.Thread(target=do, args=(event_obj,))
    t.start()

event_obj.clear()
inp = input('input:')
if inp == 'true':
    event_obj.set()

当线程执行的时候,如果flag为False,则线程会阻塞,当flag为True的时候,线程不会阻塞。它提供了本地和远程的并发性。

threading.Condition

python多线程相关图片

python多线程相关文章